Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111784

RESUMO

Calcineurin inhibitors have improved graft survival in solid-organ transplantation but their use is limited by toxicity, requiring a switch to another immunosuppressor in some cases. Belatacept is one option that has been shown to improve graft and patient survival despite being associated with a higher risk of acute cellular rejection. This risk of acute cellular rejection is correlated with the presence of belatacept-resistant T cells. We performed a transcriptomic analysis of in vitro-activated cells to identify pathways affected by belatacept in belatacept-sensitive cells (CD4+CD57-) but not in belatacept-resistant CD4+CD57+ T cells. mTOR was significantly downregulated in belatacept-sensitive but not belatacept-resistant T cells. The inhibition of mTOR strongly decreases the activation and cytotoxicity of CD4+CD57+ cells. In humans, the use of a combination of mTOR inhibitor and belatacept prevents graft rejection and decreases the expression of activation markers on CD4 and CD8 T cells. mTOR inhibition decreases the functioning of belatacept-resistant CD4+CD57+ T cells in vitro and in vivo. It could potentially be used in association with belatacept to prevent acute cellular rejection in cases of calcineurin intolerance.

2.
Am J Transplant ; 22(2): 489-503, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34431219

RESUMO

Belatacept was developed to replace calcineurin inhibitors in kidney transplantation. Its use is associated with better kidney transplant function, a lower incidence of anti-donor antibodies and higher graft survival. However, it is also associated with a higher risk of cellular rejection. We studied the activation and proliferation mechanisms of belatacept-resistant T lymphocytes (TLs), to identify new pathways for control. We performed a transcriptomic analysis on CD4+ CD57+ PD1- memory TLs, which are responsible for a higher incidence of graft rejection, after allogeneic stimulation with activated dendritic cells (aDCs) in the presence or absence of belatacept. After six hours of contact with aDCs, the (CD4+ CD57+ PD1- ) (CD4+ CD57+ PD1+ ) and (CD4+ CD57- ) lymphocytes had different transcriptional profiles with or without belatacept. In the CD4+ CD57+ PD1- population, the IFNα-dependent activation pathway was positively overrepresented, and IRF7 transcript levels were high. IRF7 was associated with IFNα/ß and IL-6 regulation. The inhibition of both these cytokines in a context of belatacept treatment inhibited the proliferation of CD4+ CD57+ PD1- T cells. Our results show that IRF7 is rapidly upregulated in belatacept-resistant CD4+ CD57+ PD1- TLs. The inhibition of type I IFN or IL-6 in association with belatacept treatment reduces the proliferation of belatacept-resistant TLs, paving the way for new treatments for use in organ transplantation.


Assuntos
Imunossupressores , Transplante de Rim , Abatacepte/farmacologia , Proliferação de Células , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Imunossupressores/farmacologia , Transplante de Rim/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...